在上一篇文章中,小编为您详细介绍了关于《有道精品课销售额同比增311.9%,将强势入局暑秋争夺|财报会》相关知识。本篇中小编将再为您讲解标题RPA+AI落地,真的难吗?。
原标题:RPA+AI落地,真的难吗?
作者|胡一川 来也科技CTO
RPA(机器人流程自动化)将原本需要人工重复执行的软件操作交给机器人执行,能够极大地帮助企业降低成本、提升效率,成为推动企业数字化转型的利器。
但是,传统RPA只能实现基于规则的流程自动化,应用场景相对受限。借助AI之后,RPA机器人则能具备感知和认知能力,将自动化拓展到更复杂的业务流程,产生更大的价值。
不过,RPA+AI,这听起来十分美好,但在实际场景中又该如何落地?
本文会从技术角度对RPA和AI进行分析,并结合来也科技在RPA+AI方面的实践,谈谈如何破局,并对未来进行展望。
两种软件开发范式
本质上来讲,RPA和AI属于两种截然不同的软件开发范式。
RPA是基于规则的软件开发范式,每一行代码都对应真实场景中的业务逻辑。因此,开发RPA机器人前,首先要梳理清楚业务流程,然后根据业务流程去编写代码。
AI则是一种全新的软件开发范式。在这种范式下,开发者不再需要用代码去编写规则,而是用代码编写机器学习模型,然后用数据来训练这个模型,最后软件基于模型的输出去完成特定的任务。
简单的说,RPA开发是给机器明确的指令每一步该做什么,AI开发是教机器过去是怎么做的,让机器去学习并举一反三。
RPA和AI属于两种不同的软件开发范式(左图:RPA流程的源代码视图;右图:AI训练神经网络参数)
开发范式的不同会带来一系列的后果,这导致RPA+AI在实际落地中遇到巨大挑战。
第一,RPA和AI对开发人员的要求不同。RPA的特点是非侵入、低代码,让不懂编程的业务人员也能开发流程。而AI模型的训练则有较高的门槛,通常需要专业的数据科学家或算法工程师才能完成。由于这类人才的稀缺,导致RPA+AI的落地变得很难。
第二,AI的开发周期要比RPA长。RPA强调的是快速落地、快速见效,而AI模型的训练要经过数据获取、数据标注、模型训练、模型部署、模型持续优化等流程。这意味着RPA+AI项目的落地周期会大大加长。
第三,AI的使用成本比RPA高。RPA是客户端程序,只要计算机的软硬件配置和系统环境满足基本要求,即可运行。AI基于深度神经网络,对计算、存储、网络等都要较高的要求,通常需要运行在GPU服务器上,部署和运维成本不小,这使得RPA+AI项目的前期投入大。
以上几点,都导致RPA+AI在实际业务中的落地并没有想象中的容易。
如何破局
不久前,来也科技发布了全新的RPA+AI平台产品——UiBot Mage,这是专为RPA机器人打造的AI能力平台,以拓宽RPA的使用边界。
UiBot Mage上线后,将与UiBot家族原有的Creator(创造者)、Worker(劳动者)、Commander(指挥官)三大模块集结,分别为RPA机器人生产、执行、分配、智能化提供相应的工具和平台。
提供开箱即用的AI能力
既然AI模型依赖数据和训练,第一种破局的思路就是提前把模型训练好供RPA使用。这个方案的前提是,我们要知道RPA需要什么样的AI能力。
为此,来也科技深入分析了几十个业务场景中的几百个业务流程,从中梳理出RPA最需要的AI能力。我们发现,在RPA流程中,最能够用到AI能力的地方,是对各种非结构化数据的处理。在这些场景中,RPA可以利用文字识别、文本理解等AI能力将非结构化数据进行结构化。
文字识别即我们常说的OCR,它可以应用于文档识别、表格识别、票据识别、卡证识别等垂直场景。UiBot Mage针对每个场景提供若干个开箱即用的模型。例如,票据识别场景下开箱即用的模型覆盖了增值税专用发票、增值税普通发票、行程单、火车票等20多种票据类型,在卡证识别场景则包括了银行卡、身份证、护照、营业执照等20多种模型。
此外,UiBot Mage在文本理解方面也提供一系列开箱即用的模型。以信息抽取为例,我们提供的模型支持几十种常见的实体抽取,包括企业名称、日期、时间、金额、地址、电话等,能够应对大多数业务中的信息抽取需求。
以上AI能力的开箱即用还体现在与Creator的无缝集成上。所有AI能力都以自定义命令的形式存在于Creator中,开发者只需通过拖拽和简单设置就可在RPA流程中使用AI能力。这样,没有任何AI经验的RPA工程师甚至业务人员,都可以享受到AI给RPA带来的价值。
通过提供开箱即用的AI能力,UiBot Mage可覆盖到RPA中常见的需要AI能力的场景。但是,对于长尾的、非标准化的场景,开箱即用的模型无法满足用户的需求,因此我们需要有新的解决方案。
通过预训练降低训练成本
2018年底,Google推出BERT,其核心原理是,用海量数据预先训练一个基于深度神经网络的语言模型,然后针对特定NLP任务在原网络的基础上再次训练得到一个模型(这个过程叫做Fine-tune),其效果在几乎所有NLP任务上都明显优于当时最好的模型。
这个方法叫做预训练(Pre-training),它给我们的最大启示在于不同的机器学习任务其底层有相通之处,我们可以用大量任务无关的数据(大数据)事先训练好一个模型,等到要解决特定任务时,只需要用少量任务相关的数据(小数据)对模型进行微调,即可达到理想的效果。这种方法对训练数据量的要求更少,数据标注成本更低,训练时间也更快,最为关键的是,在预训练基础上训练的模型比没有预训练的模型效果要好。
回到RPA+AI场景,前面提到的OCR任务虽然使用不同的模型,其底层确有相通之处。比如,虽然针对不同类型文档有不同的OCR模型,但我们都可以将其拆分为其字符检测和字符识别两部分。因此,我们可以通过大量数据预训练得到检测和识别的基础模型,然后在特定任务上进行Fine-tune,这样便能在保障模型效果的前提下,大大减少对训练数据的要求,并降低了模型的训练成本。
对于NLP任务,预训练同样能给我们带来明显的收益。前面提到的BERT,属于预训练的语言模型,除此之外,我们还可以对词的表示、句子的表示、篇章的表示等模型进行预训练。
未来展望
UiBot Mage通过提供开箱即用的模型、预训练等手段来加速RPA+AI的落地,但RPA+AI今天仍然在发展早期,未来还有很长的路要走。对于RPA+AI的未来发展,以下几个方向值得我们持续关注和不断创新。
前面提到,基于深度学习的AI模型对于硬件有较高的要求,其部署过程也比RPA要复杂很多,这无疑增加了RPA+AI的落地门槛。未来,软硬件一体的RPA+AI产品或许能够有效解决这一问题,用户不用担心硬件的选型、部署和维护,让RPA+AI真正做到“开箱即用”。
此外,边缘计算能力的提升和普及,使得AI的推理可以从服务端转移到客户端。由于RPA是运行在客户端的软件,相比基于服务端的RPA+AI方案,基于边缘计算的RPA+AI方案在架构上更加简单、灵活,其成本也将大幅下降。边缘计算的RPA+AI方案将让我们真正实现“人人都有一个机器人”。
最后,一个好的AI系统需要“活”的数据来持续更新模型适应环境变化。因此,在RPA+AI中如何高效的实现人机协同,形成数据闭环,是一个未来值得研究的重要课题。游戏网
编后语:关于《RPA+AI落地,真的难吗?》关于知识就介绍到这里,希望本站内容能让您有所收获,如有疑问可跟帖留言,值班小编第一时间回复。 下一篇内容是有关《三星1/1.3英寸超大底传感器GN1曝光!vivoX50Pro或将首发》,感兴趣的同学可以点击进去看看。
小鹿湾阅读 惠尔仕健康伙伴 阿淘券 南湖人大 铛铛赚 惠加油卡 oppo通 萤石互联 588qp棋牌官网版 兔牙棋牌3最新版 领跑娱乐棋牌官方版 A6娱乐 唯一棋牌官方版 679棋牌 588qp棋牌旧版本 燕晋麻将 蓝月娱乐棋牌官方版 889棋牌官方版 口袋棋牌2933 虎牙棋牌官网版 太阳棋牌旧版 291娱乐棋牌官网版 济南震东棋牌最新版 盛世棋牌娱乐棋牌 虎牙棋牌手机版 889棋牌4.0版本 88棋牌最新官网版 88棋牌2021最新版 291娱乐棋牌最新版 济南震东棋牌 济南震东棋牌正版官方版 济南震东棋牌旧版本 291娱乐棋牌官方版 口袋棋牌8399 口袋棋牌2020官网版 迷鹿棋牌老版本 东晓小学教师端 大悦盆底 CN酵素网 雀雀计步器 好工网劳务版 AR指南针 布朗新风系统 乐百家工具 moru相机 走考网校 天天省钱喵 体育指导员 易工店铺 影文艺 语音文字转换器