在上一篇文章中,小编为您详细介绍了关于《2个月暴涨近200% 比特币再登1万美元关口》相关知识。本篇中小编将再为您讲解标题达摩院再获自动驾驶测评第一 可识别厘米级障碍物。
原标题:达摩院再获自动驾驶权威测评第一,车辆可识别厘米级障碍物
5月8日,在自动驾驶权威数据集Semantic KITTI上,达摩院凭借全新算法在“单帧3D点云语义分割”排行榜获得第一。该技术用于达摩院的无人物流车后,大幅提升了车辆的环境精细化理解能力,使车辆能够识别“厘米级”障碍物。
KITTI数据集是全球最权威的自动驾驶计算机算法评测数据集,为促进基于激光的语义分割研究,KITTI推出了细分数据集Semantic KITTI,通过全类别分割平均交并比(mIOU)和整体准确率(accuracy)两大指标,考察参赛者的技术能力。达摩院团队在两项指标的评比中均拿下第一。
点云(Point Cloud)是拥有三维坐标、强度等信息的激光点的集合,是计算机视觉领域常用的三维数据表示方式。自动驾驶车辆通常借助激光雷达、摄像头、毫米波雷达等传感器识别环境信息。对于激光雷达获取的周围环境的3D点云,识别每个点的语义标签,就是“3D点云语义分割”。
图左为原始点云,图右为经过语义分割的点云,自动驾驶车辆辨别出了行人、车辆、树木、建筑等物体。
除了行人、车辆等常规检测目标,道路周围的建筑、绿化、不明障碍物也会影响自动驾驶车辆的驾驶行为,3D点云语义分割技术的目标,便是帮助车辆更精细地理解道路环境。
达摩院自动驾驶实验室资深算法专家卿泉介绍,业界通用的点云局部上下文特征建模方法难以满足自动驾驶实时、精准的感知需求。达摩院提出的新算法以激光点为载体,结合每个3D点在鸟瞰、前视等视角下的邻域特征,通过多层级联编码进行特征学习,很大增强3D点的特征表示能力,由此提高了语义识别的准确性。
该算法应用于达摩院的无人物流车后,车辆对障碍物的精细化识别水平大幅提升。比如在行驶途中遇到临时拉起的警戒线,即便线宽仅有3厘米,物流车也能轻松识别并绕道而行。
编后语:关于《达摩院再获自动驾驶测评第一 可识别厘米级障碍物》关于知识就介绍到这里,希望本站内容能让您有所收获,如有疑问可跟帖留言,值班小编第一时间回复。 下一篇内容是有关《《逆水寒》合服导致玩家矛盾激化:还真是人山人海!》,感兴趣的同学可以点击进去看看。
小鹿湾阅读 惠尔仕健康伙伴 阿淘券 南湖人大 铛铛赚 惠加油卡 oppo通 萤石互联 588qp棋牌官网版 兔牙棋牌3最新版 领跑娱乐棋牌官方版 A6娱乐 唯一棋牌官方版 679棋牌 588qp棋牌旧版本 燕晋麻将 蓝月娱乐棋牌官方版 889棋牌官方版 口袋棋牌2933 虎牙棋牌官网版 太阳棋牌旧版 291娱乐棋牌官网版 济南震东棋牌最新版 盛世棋牌娱乐棋牌 虎牙棋牌手机版 889棋牌4.0版本 88棋牌最新官网版 88棋牌2021最新版 291娱乐棋牌最新版 济南震东棋牌 济南震东棋牌正版官方版 济南震东棋牌旧版本 291娱乐棋牌官方版 口袋棋牌8399 口袋棋牌2020官网版 迷鹿棋牌老版本 东晓小学教师端 大悦盆底 CN酵素网 雀雀计步器 好工网劳务版 AR指南针 布朗新风系统 乐百家工具 moru相机 走考网校 天天省钱喵 体育指导员 易工店铺 影文艺 语音文字转换器