在上一篇文章中,小编为您详细介绍了关于《奥迪欧洲工厂4月底逐步复工》相关知识。本篇中小编将再为您讲解标题学了后面忘前面治疗AI“健忘症”还难有良策。
原标题:学了后面忘前面 治疗AI“健忘症”还难有良策
很多人在上学的时候都有这样的经历,在经过了一个寒假返校后,发现前一学期学到的内容有的已经忘了。在见识过人工智能PK人类的屡屡胜绩后,有人不免羡慕AI强大的学习本领,但事实上人工智能的“记性”并不如你想象的那样好,如果你像人工智能系统那样学习,很可能在学习新知识的同时,大脑便会逐渐忘了之前的内容,其原因就在于人工智能遭遇了“灾难性遗忘”。
近日,来自谷歌大脑的最新研究发现,在街机学习环境的由多个子任务组成的单任务场景中也存在着“灾难性遗忘”。特别像在“蒙特祖玛复仇”这种探索型游戏里,场景变化较大,会出现学习完当前游戏场景后,忘记上一个游戏场景知识的情况。
那么人工智能为什么会产生“灾难性遗忘”?目前解决“灾难性遗忘”的方案有哪些?难点在哪?就此,科技日报记者采访了有关专家。
学一个忘一个 深度学习效率低下
自从阿尔法围棋(AlphaGo)相继战胜多名围棋冠军后,深度学习已经成为众多实现人工智能的方法中最耀眼的“明星”,也是各大研发机构角逐的主战场。而谷歌大脑团队这次面临的“灾难性遗忘”,正是人工智能深度学习中所面临的一个普遍且严重的问题。
“‘灾难性遗忘’指的是人工智能系统,如深度学习模型,在学习新任务或适应新环境时,忘记或丧失了以前习得的一些能力。”腾讯人工智能实验室副主任俞栋博士在接受科技日报记者采访时说,“灾难性遗忘”会造成人工智能系统在原有任务或环境中的性能大幅下降。
美亚柏科信息中心总经理魏朝东介绍,在深度神经网络学习不同任务的时候,相关权重的快速变化会损害先前任务的表现,通俗来说,就是在学习中像猴子搬苞谷,捡一个丢一个,记住了新知识,也有可能会忘掉了老知识。
正是源于此,“灾难性遗忘”的存在,一定程度上限制了人工智能在一些场景中的应用。
福州大学数学与计算机科学学院、福建省新媒体行业技术开发基地副主任柯逍博士举例说,如一个AI图像识别系统,当需要添加一个新的类别的物体时,就不得不把原先的所有物体都再学习一次。如在文物鉴定系统中,当有一天发现原始数据中有一个文物朝代错了,便没办法单独对这一个错误的文物进行修改学习;再如让AI系统学习英语之后,再让它学习德语,它可能会把原来学习的英语语法全部忘光。
那么在谷歌大脑的最新研究中,“灾难性遗忘”又造成了哪些影响?其中又有何新发现?
“除了传统的新知识学习会覆盖旧知识之外,这次谷歌大脑还发现,在如‘超级玛丽’等探索型游戏里,‘灾难性遗忘’会阻碍模型对新知识的学习。”厦门大学科技处副处长、人工智能系教授纪荣嵘说。
纪荣嵘进一步解释说,面向街机游戏学习的强化学习方法都会采用“经验回放”的训练方式,就是将模型在游戏探索时候的片段进行保存,然后给模型进行“回放”训练。而像“蒙特祖玛复仇”这种游戏,游戏场景变化比较大,模型需要不间断探索游戏场景,因此,在训练时候就必须不断回放早期场景的游戏经验,不然会因为“灾难性遗忘”而忘记了早期的游戏知识。
“这也导致了新的游戏经验虽然能够被采样到‘经验回放’库里,但因为学习方式的设定,导致学习效率低,同时由于不同阶段的学习会互相干扰,使得AI无法一次通过该游戏的全部关卡。”纪荣嵘说。
AI“脑容量”存上限 新旧知识难共存
AI为什么会产生“灾难性遗忘”?
“深度学习的结构一旦确定,在训练过程中很难调整。神经网络的结构直接决定学习模型的容量。”柯逍说,AI“脑容量”存在上限,也就导致了人工智能只能有限地处理特定任务。就像水桶一半高的地方有个洞,以至于无论怎么增加水桶的高度,这个水桶只能装一半高的水。
中科院自动化所脑网络组研究中心研究员、模式识别国家重点实验室副主任余山指出,这还涉及到神经网络学习知识的机制。在单个任务的训练过程中,网络中各个神经元之间的连接权重进行了专门的调整,以胜任当前的任务。而在新任务的训练中,连接权重要针对新任务进行调整,这将“抹去”适应旧任务的原有结构,导致在旧任务上的性能大大下降。
人类的记忆能力其实是有限的,但为何出现“灾难性遗忘”的情况却比较少?“主要是人类在学习过程当中,大脑能够主动保留有用的知识和技巧,同时不影响新的信息获取。” 纪荣嵘说,但现在的人工智能模型大部分是基于随机梯度下降来更新模型参数,这个过程主要服务于当前任务的优化,并不会去评估哪些参数权重对旧的知识是有用的,所以就很容易出现知识被覆盖的情况。
纪荣嵘也表示,当前像Siri或小爱这样的人工智能助手产品,还不能算真正意义上的通用人工智能,一方面,这些人工智能助手只能在预设的知识范围内和人类互动,完成指令;另一方面,人类没办法像养宠物或养小孩一样,通过互动去教导这些人工智能助手学习新的知识或新的指令。
有多个解决方案 但都治标不治本
据了解,破解“灾难性遗忘”是实现通用人工智能的一个关键。解决了“灾难性遗忘”问题,就意味着模型具备了持续学习的能力, 可以像人类一样不断获取新的知识、新的技能,同时能够最大化地保持旧的经验知识和技巧。
那么,目前解决“灾难性遗忘”的方案有哪些?
“最常见的方式是多任务学习, 就是把所有任务的训练数据同时放到一起,模型就可以针对多种任务进行联合优化。”纪荣嵘举例说,如让模型同时学习“坦克大战”和“超级玛丽”两个任务,等两个任务同时学的差不多的时候,模型才停止训练。
但柯逍也指出,这种方式随着任务增多,新任务样本数量被稀释,训练会拖慢学习新知识的效率,并且不是任何情况都能获得先前任务的数据来复习的。
还有的解决方案是根据新的任务知识来扩充模型结构,保证旧的知识经验不被损害。此次,谷歌大脑所提出的“记忆碎片观察”方法正是对不同任务(场景)构建多个人工智能模型来进行学习。“模型扩充的方式从本质上并没有解决‘灾难性遗忘’的问题,只是用多个模型来替代单个模型去学习多种任务,避免旧参数被覆盖。”纪荣嵘说。
当前,解决“灾难性遗忘”还存在着一对矛盾:在学习新任务的过程中,需要给予网络足够多的自由度进行连接权重调整,但是又要避免这样的调整“抹去”原有的记忆。
“因此,科学家们开始设计新的学习算法解决上述矛盾,使得网络在进行权重调整的时候,对已有知识的影响最小化。”余山表示,其团队近期提出的正交权重修改算法,就属于这类,主要通过限制权重修改只能在旧任务的解空间中进行,这一算法较好的克服了“灾难性遗忘”,使得同一个分类器网络可以连续学习多达数千个类别的识别。
魏朝东认为,虽然科学家们已经探索出多种解决方案,但目前的AI学习只是从认知科学中获得了一小部分灵感,对大脑的模拟还没达到人们想象的高度,大部分AI学习方案是“先天不足”的。“灾难性遗忘”是一个综合性问题,不仅需要有理论支撑,未来还需要有可行的技术手段去实现。(记者 谢开飞 通讯员 欧阳桂莲 许晓凤 王忆希)游戏网
编后语:关于《学了后面忘前面治疗AI“健忘症”还难有良策》关于知识就介绍到这里,希望本站内容能让您有所收获,如有疑问可跟帖留言,值班小编第一时间回复。 下一篇内容是有关《覆盖珠峰后,5G建设还有哪些坎》,感兴趣的同学可以点击进去看看。
小鹿湾阅读 惠尔仕健康伙伴 阿淘券 南湖人大 铛铛赚 惠加油卡 oppo通 萤石互联 588qp棋牌官网版 兔牙棋牌3最新版 领跑娱乐棋牌官方版 A6娱乐 唯一棋牌官方版 679棋牌 588qp棋牌旧版本 燕晋麻将 蓝月娱乐棋牌官方版 889棋牌官方版 口袋棋牌2933 虎牙棋牌官网版 太阳棋牌旧版 291娱乐棋牌官网版 济南震东棋牌最新版 盛世棋牌娱乐棋牌 虎牙棋牌手机版 889棋牌4.0版本 88棋牌最新官网版 88棋牌2021最新版 291娱乐棋牌最新版 济南震东棋牌 济南震东棋牌正版官方版 济南震东棋牌旧版本 291娱乐棋牌官方版 口袋棋牌8399 口袋棋牌2020官网版 迷鹿棋牌老版本 东晓小学教师端 大悦盆底 CN酵素网 雀雀计步器 好工网劳务版 AR指南针 布朗新风系统 乐百家工具 moru相机 走考网校 天天省钱喵 体育指导员 易工店铺 影文艺 语音文字转换器