在上一篇文章中,小编为您详细介绍了关于《自然交互不是梦,Manus VR追踪手套介绍》相关知识。本篇中小编将再为您讲解标题深入对比MLO,HoloLens和Lumus三款波导头显分辨率。
在今天的文章中,AR硬件/软件企业Rave的首席科学家KarlGuttag对比分析了MagicLeap One,HoloLens和Lumus这三款波导头显的分辨率。以下是映维网的具体整理: 自今年1月份的CES大会以来我就一直想做这种对比分析。这是一次比较三种波导头显的机会:两款更为有名的衍射波导型头显HoloLens和MagicLeapOne,以及基于非衍射波导的Lumus头显。与我在17年和18年CES大会体验的衍射波导相比,我更欣赏Lumus的图像质量。 对于这篇文章,我主要是比较MagicLeapOne(ML1),HoloLens,以及LumusDK-Vision的分辨率。这三款设备都采用了“全内反射(TIR)”来支持一层薄“波导”。 ML1和HoloLens采用了一系列的衍射光栅来支持光线进入和离开波导。HoloLens为红,绿,蓝准备了一层波导,而ML1则为三种颜色准备了两层(共六层)波导以支持他们的焦平面概念。我已经在之前的文章中对ML1和HoloLens的波导进行了一定的讨论。 Lumus选择了所谓的“光导光学元件(Light-guideOpticalElement;LOE)”,其可通过一层波导来处理所有的颜色。一层LOE的厚度类似于HoloLens多层波导堆叠。他们只是以一定角度切割波导的入口以使光线进入(而非使用特定颜色的衍射光栅),然后再使用一系列经过特别设计的局部反射镜来使光线射出。 1.拍照与测试图 我使用了相同的奥林巴斯OM-DE-M10MarkIII相机和相同的14-42mm镜头。你可以单击图片并以更高分辨率进行查看。我为每个显示器拍摄了数百张照片,然后在测试图中选择了最佳区域,试图呈现每个设备的最佳状态。 测试图是基于我在测试其他显示器时发现非常有用的测试图。有一系列320×240的子图案用于测试分辨率,其能够多次复制以填充显示分辨率。有一些大圆圈可以测试整个显示器的颜色纯度。我同时采用了包含人像的图片来替换一个或两个彩色场景,以此来检查颜色。对于想要验证或质疑我结果的任何人士,你都可以在这里找到我所使用的测试图。 2.光学子系统:显示组件,投影仪光学,以及波导组合器 在High-Level,三款头显都采用了类似的光学架构,并且都采用了场序彩色(FSC)和硅基液晶(LCOS)微型显示器,但它们来自不同的LCOS制造商。它们中的每一个都包含“投影仪光学”,其能够校准和操纵图像以注入各自的波导之中。三者最不同的地方在于波导结构。 3.头显:ML1,HoloLens和Lumus 3.1MagicLeapOne ML1使用衍射波导并阻挡约85%的真实光线。你可能会注意到,在上图中无法看到用户的眼睛。它搭载了一个由Omnivision制作的1280×960LCOS微型显示器,但有效分辨率要低很多。它的对角线视场大约是45度,水平视场则是40度左右。 ML1支持约220cd/m2。在显示测试图时,我只能看到ML1显示了1280个水平像素中的大约1160个。我怀疑丢失的约120像素用于瞳距调整。
iFixit的拆解说明ML1组件具有Omnivision的自定义分辨率,并且可能使用与Omnivision的1080p和720p组件相同的4.5微米像素间距。 3.2Hololens 微软HoloLens使用了类似于ML1的衍射波导,并阻挡约60%的真实光线,允许通过的光线比ML1多大约2.7倍。在右边的图片中,你可以看到佩戴者的眼睛,但很暗。它采用Himax制造的1366×768像素LCOS微型显示器,对角线视场约是35度,水平视场则是30度左右。 当在全帧观察时,我能够看到测试图中1280个水平像素中的约1270个。HoloLens在全亮度下支持约320cd/m2,或者说比ML1亮约1.5倍。HoloLens中的HimaxFSCLCOS组件可能采用了约6微米像素间距。 3.3LumusDK-Vision Lumus的DK-Vision显示1920×1080像素(1080p),或者说大约是ML1和HoloLens的两倍。我在“CES2018AROverview”这篇文章中首次探讨了DK-Vision,而Lumus官网提供了宣传单张。LumusLOE有一系列的偏振半反射镜,可作为垂直视场和瞳孔扩展器。Lumus头显只遮挡约20%的真实光线,比ML1亮约5.3倍,比HoloLens亮约2倍。我没有直接测量Lumus头显的亮度,但根据相机设置,它大致有1000cd/m2,大约比ML1亮五倍,比HoloLens亮三倍(Lumus同时研发了高达6500cd/m2的军用产品)。Lumus声称DK-Vision目前可支持2000cd/m2,并最终能够支持3000cd/m2,或者说比ML1和Hololens亮大约一个数量级。Lumus头显中使用的1080pRaontechLCOS组件具有6.3微米像素间距。 4.关于LumusDK-Vision原型及其LCOS显示组件的一些评论 我想说明的是,尽管ML1和HoloLens只是小批量生产的开发套件,但Lumus的头显属于“仅供参考”。ML1和HoloLens具备许多Lumus演示设备所不支持的功能。Lumus头显尽管搭载了摄像头,惯性测量单元和处理器,但并不具备MagicLeap和Hololens中的功能(如SLAM)。 Lumus头显中的LCOS组件是Raontech的早期1080p原型,因此不一定代表最终产品。坦白说,色彩平衡和灰度响应并不是很好,这种情况并不罕见,因为它只是原型而非实际产品。我确实对照片进行了一定的白平衡调整,因为:1.它是一个原型;2.目标是比较光学;3.由于Lumus采用来自不同厂商的LCOS组件,因此最终产品不一定来自于Raontech。 由于这台Lumus头显是少数现有原型中的其中一台,它们可能是手工挑选和组装单元,因此它可能无法代表最终的产品。在大批量生产的同时,质量应该能有所提高。为提高他们的批量生产能力,Lumus最近与广达电脑达成了生产合作伙伴关系。 影响结果的一个关键因素是,RaontechLCOS面板的黑色与白色响应非常不对称,它非常偏向于黑色。一像素宽的白线几乎不可见,而一像素宽的黑线几乎是应有样子的两倍宽。由于LC行为和驱动,任何液晶显示器的黑色与白色响应总是存在一定程度的差异,但相对于我见过的其他LCOS组件,Raontech的不对称非常严重。这种不对称性也会影响整体外观,甚至是灰度/颜色响应。我希望Raontech能够在他们的LCOS组件中调整他们的液晶配方/加工方式。 5.全视场图片 下面的图片显示了每个头显的整个视场。这些图片不按比例绘制。
HoloLens的水平视场约为30度,ML1为约35度,Lumus也是35度左右。测试图中的每个子图案(带有编号的圆和可变大小的文本)是320×240像素。Lumus原型几乎是ML1和HoloLens水平像素的两倍。你可能还会注意到,尽管Lumus和Hololens的宽高比大致为16:9,但ML1更为方正,名义比率是4:3。 完整的测试图可以帮助你全面了解图像质量,以及颜色在视场中的变化情况。这些图片水平上有大约2600到2900个相机像素,但不足以完全评估1140和1920像素宽之间的图像分辨率。基于基本采样理论和奈奎斯特(Nyquist)速率,你显然希望每个显示像素具有两个以上的相机像素(样本)。 HoloLens和ML1在视场上都有明显的色移问题,在白色背景图像上更为明显。Lumus只是在远角处有一定的色移。在Lumus图片中,较小的文本看起来是更暗/褪色,这是LCOS组件行为的结果。 我注意到LumusDK-Vision存在一些ML1或HoloLens所没有的垂直枕形失真。我怀疑枕形化来源于他们的投影光学系统而非波导本身。最右侧的一些子图案(特别是子图案26和36)也存在一些重影。应该注意的是,这是原型而非生产产品,所以希望他们能够在生产制造之前能够改进部分或全部问题。 HoloLens(水平约1270像素) ML1(水平约1160像素) Lumus(水平约1920像素) 接下来,我们在白色背景图像看到有黑色。与HoloLens和MagicLeap的衍射波导相比,LumusLOE波导在整个场中具有显著更好的颜色和亮度均匀性。在第5行哪里(51-56)那里,Lumus显示器确实出现了微暗的黑带,我怀疑这是由LOE分区的匹配所造成。另外,左下角有一定的色移和变暗。由于LCOS组件的不对称性,小文本不会像黑色背景上的白色文本那样淡化。 6.相同视场近拍 对于下一组图片,相机为较大的图像进行了相应地放大,因此你可以看到每台设备视场中大致相等的部分,比例大致相同。在图片中,你可以看到只有3像素,2像素和1像素宽线的插图。Hololens的水平像素数量大致与ML1相同,但视场较小,因此在进行相似的缩放时,图像和插图像更小。应该注意的是,LumusDK-Vision的插图已经放大了2倍,因此你可以看到细节。 因此在用眼睛看时,DK-Vision上的2像素宽线条与ML1上的1像素宽线条的大小和宽度大致相同,并且比ML1上的2像素宽线条调制得更好。DK-Vision的水平和垂直角分辨率似乎是ML1的大约4倍。 白色背景图片如下所示。白色背景更能看到光学元件散射多少光线。应该注意的是,与Hololens和DK-Vision相比,ML1的“黑色”1像素宽线条不会变得非常黑,这表明ML1光学元件/波导是在散射光线: 7.64×64子图案并排对比 最后,下面是每个头显最合适的64×64像素子图案。子图案有一组3像素宽的线,3像素宽的空间,接着是2像素宽的线和空间,接着是1像素宽的线和空间。这个子图案的目的是测试光学组件的有效分辨率,并基于广泛使用的1951USAF分辨率图表。
这三个部分的LCOS组件在黑色到白色,以及白色到黑色的过渡方面是不同的和不对称的,如黑色背景图和白色背景图所示。白色背景图的黑色能说明光学系统中是否存在散射问题。 如前所述,Lumus已经放大到HoloLens和ML1图像相对大小的两倍。这意味着实际上Lumus的2像素宽线非常接近于ML1的1像素线。 HoloLens可以显示1像素宽的线条,但它们不是特别清晰。LCOS似乎略微偏向于白色而非黑色(1像素宽白线看起来比黑线宽)。你可能会注意到黑色背景的线条(左上角)比白色背景的线条(左下角)宽。由于HoloLens光学元件(波导和/或投影仪)会散射光,白色背景的对比度较低。 ML1几乎没有显示对1像素线条的调制。与其他两台设备相比,即使2像素宽线也不是特别锐利。我从其他实验中注意到ML1的“开-关”对比度好于HoloLens,但正如白色背景图所示,ML1上的白光散射明显更差。你应该注意到,平整的3像素宽线条看起来都非常模糊和圆滑。 与HoloLens类似,ML1的LCOS似乎略微偏向白色而不是黑色。根据现有信息,ML1的Omnivision微型显示像素在物理上尺寸更小(4.5微米:约6微米),而需要进行更多地放大可能会导致ML1的有效分辨率更低。根据我所看到的情况,ML1最多可能只在每个方向上实现所述分辨率的一半。 ML1的默认图像大小分辨率非常糟糕,我做了一个测试,试图在其有效分辨率上获得更高的精度。当测试图锁定在空间中时,我逐渐向它移动并在我能够识别1像素宽线条时停止。然后我注意到视场中有多少像素可见,并拍了一张照片(下图)。结果是,在大约710像素宽的情况下,我可以开始看到离散的四条线。它们仍然没有很好地进行调制,但至少有四条线可见。 Lumus光学可以解析1920×1080显示屏上的1像素宽线条。角分辨率在每个方向上比ML1的角度分辨率多三倍,更像是4倍。Lumus系统分辨率的限制是LCOS微型显示器。从黑色背景图vs白色图可以看出,LCOS高度不对称,更倾向于黑色。考虑到LCOS组件的物理像素尺寸是6.3微米,在三个头显中最大,而这是特别糟糕的情况。对于黑色背景图,1像素宽白色线条非常暗和细,而白色背景图上的黑色非常宽。 仔细观察下面Lumus头显的放大图像,你甚至可以看到LCOS像素镜之间的间隙有一系列微淡淡的水平和垂直线,这些线远小于像素的宽度。在这种情况下,分辨率受到LCOS组件的限制。需要提醒的是,这已经是“最佳”子图案。 8.总结 与HoloLens和Lumus相比,ML1的分辨率不如前两者。
我使用相同的设备,并且花费了很多时间来试图获得最好的图像。你在佩戴MagicLeap时显然不希望阅读文本。 对于HoloLens,1像素宽线条与你期望的一样,它们有点模糊但不算台糟糕。Hololens的“开-关”对比度略低于100:1。 DK-Vision在分辨率方面处于不同的阵营。但它受到LCOS组件的不对称性限制,希望他们能够解决这个问题。 根据我的观察,ML1尝试在水平上显示大约1160个像素,水平视场为40度(对角线约45度)。每像素可达2.06弧分(一个弧分=1/60度)。因为ML1很模糊,实际上每个像素只能显示大约4弧分。HoloLens显示约1024像素,水平超过约30.5度,或者说约1.78弧分/像素,是ML1的两倍。DK-Vision显示1080p像素,大约35度视场(对角线约40°),每像素约为1.08弧分,或约为ML1有效分辨率的四倍。 9.其他因素(颜色,透明度和亮度) 尽管本文主要是跟分辨率有关,但我想讲讲其他一些观察结果。 与MagicLeap和HoloLens的衍射波导相比,LumusLOE视场上的颜色和亮度均匀性给我留下了深刻的印象。MagicLeap和Hololens的颜色在视场上会出现色移和波动,如上面的图片所示。尽管DK-Vision在角落位置同样存在一定的问题,但显然优于另外两者。 Lumus在透明度方面也有很大的优势。Lumus只阻挡约20%的真实光线,而MagicLeap阻挡了大约85%,HoloLens则是60%。ML1显然更暗。 Lumus头显也比ML1或HoloLens亮一个数量级。这对于帮助图像脱颖而出,并支持户外用例而言十分有必要。Lumus声称他们的技术相较于衍射波导具有明显的光效优势,尽管我无法验证这一说法,但我认为这是可信的。所有三款头显都使用LCOS,而它们应具有相似的反射率,但我怀疑ML1是由于双焦平面的存在而丢失了一定的效率。如果你只是在LED上提升功率,它们会变得更热,效率更低,这反过来导致需要更多的热量管理,从而增加了体积和重量,而且很快就会失控。 DK-Vision和ML1都使用外置电池组,而Hololens则内置电池,但我不认为这是亮度产生差异的主要因素。我认为原因在于光损耗和热量管理。 10.基本论点 简而言之,虽然并不完美,但在将虚拟信息叠加在现实世界这方面,Lumus光学系统更符合我对“增强现实”显示器的期望。 我不知道为什么MagicLeap和微软都决定采用衍射波导,我欢迎他们回应这篇分析文。MagicLeap和微软都知道Lumus的波导,也许他们存在各自的业务或技术原因。ML1和Hololens的问题与我见过的其他十几种衍射波导都一致。在主要方面上,包括透明(并且不会造成伪影),分辨率,色彩均匀性和亮度(光学效率),Lumus似乎都优于另外两款设备。
文章来源:映维网如转载请标明出处 原文链接:https://yivian.com/news/51883.html...。
编后语:关于《深入对比MLO,HoloLens和Lumus三款波导头显分辨率》关于知识就介绍到这里,希望本站内容能让您有所收获,如有疑问可跟帖留言,值班小编第一时间回复。 下一篇内容是有关《叫板谷歌?又一款VR纸盒眼镜众筹成功》,感兴趣的同学可以点击进去看看。
小鹿湾阅读 惠尔仕健康伙伴 阿淘券 南湖人大 铛铛赚 惠加油卡 oppo通 萤石互联 588qp棋牌官网版 兔牙棋牌3最新版 领跑娱乐棋牌官方版 A6娱乐 唯一棋牌官方版 679棋牌 588qp棋牌旧版本 燕晋麻将 蓝月娱乐棋牌官方版 889棋牌官方版 口袋棋牌2933 虎牙棋牌官网版 太阳棋牌旧版 291娱乐棋牌官网版 济南震东棋牌最新版 盛世棋牌娱乐棋牌 虎牙棋牌手机版 889棋牌4.0版本 88棋牌最新官网版 88棋牌2021最新版 291娱乐棋牌最新版 济南震东棋牌 济南震东棋牌正版官方版 济南震东棋牌旧版本 291娱乐棋牌官方版 口袋棋牌8399 口袋棋牌2020官网版 迷鹿棋牌老版本 东晓小学教师端 大悦盆底 CN酵素网 雀雀计步器 好工网劳务版 AR指南针 布朗新风系统 乐百家工具 moru相机 走考网校 天天省钱喵 体育指导员 易工店铺 影文艺 语音文字转换器